Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38463965

RESUMO

The role of translational regulation in brown adipogenesis is relatively unknown. Localized translation of mRNAs encoding mitochondrial components enables swift mitochondrial responses, but whether this occurs during brown adipogenesis, which involves massive mitochondrial biogenesis, has not been explored. Here, we used ribosome profiling and RNA-Seq, coupled with cellular fractionation, to obtain spatiotemporal insights into translational regulation. During brown adipogenesis, a translation bias towards G/C-ending codons is triggered first in the mitochondrial vicinity by reactive oxygen species (ROS), which later spreads to the rest of the cell. This translation bias is induced through ROS modulating the activity of the tRNA modification enzyme, ELP3. Intriguingly, functionally relevant mRNAs, including those encoding ROS scavengers, benefit from this bias; in so doing, ROS-induced translation bias both fuels differentiation and concurrently minimizes oxidative damage. These ROS-induced changes could enable sustained mitochondrial biogenesis during brown adipogenesis, and explain in part, the molecular basis for ROS hormesis.

2.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38547398

RESUMO

The hypervirulent lineages of Klebsiella pneumoniae (HvKp) cause invasive infections such as Klebsiella-liver abscess. Invasive infection often occurs after initial colonization of the host gastrointestinal tract by HvKp. Over 80% of HvKp isolates belong to the clonal group 23 sublineage I that has acquired genomic islands (GIs) GIE492 and ICEKp10. Our analysis of 12 361 K. pneumoniae genomes revealed that GIs GIE492 and ICEKp10 are co-associated with the CG23-I and CG10118 HvKp lineages. GIE492 and ICEKp10 enable HvKp to make a functional bacteriocin microcin E492 (mccE492) and the genotoxin colibactin, respectively. We discovered that GIE492 and ICEKp10 play cooperative roles and enhance gastrointestinal colonization by HvKp. Colibactin is the primary driver of this effect, modifying gut microbiome diversity. Our in vitro assays demonstrate that colibactin and mccE492 kill or inhibit a range of Gram-negative Klebsiella species and Escherichia coli strains, including Gram-positive bacteria, sometimes cooperatively. Moreover, mccE492 and colibactin kill human anaerobic gut commensals that are similar to the taxa found altered by colibactin in the mouse intestines. Our findings suggest that GIs GIE492 and ICEKp10 enable HvKp to kill several commensal bacterial taxa during interspecies interactions in the gut. Thus, acquisition of GIE492 and ICEKp10 could enable better carriage in host populations and explain the dominance of the CG23-I HvKp lineage.


Assuntos
Ilhas Genômicas , Klebsiella pneumoniae , Peptídeos , Policetídeos , Animais , Camundongos , Humanos , Virulência , Klebsiella pneumoniae/genética , Fatores de Virulência/genética , Antibacterianos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...